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Abstract—The prevalence of Large Language Models (LLMs)
is having an growing impact on the climate due to the substan-
tial energy required for their deployment and use. To create
awareness for developers who are implementing LLMs in their
products, there is a strong need to collect more information
about the energy efficiency of LLMs. While existing research
has evaluated the energy efficiency of various models, these
benchmarks often fall short of representing realistic production
scenarios. In this paper, we introduce the LLM Efficiency
Benchmark, designed to simulate real-world usage conditions.
Our benchmark utilizes vLLM, a high-throughput, production-
ready LLM serving backend that optimizes model performance
and efficiency. We examine how factors such as model size,
architecture, and concurrent request volume affect inference
energy efficiency. Our findings demonstrate that it is possible to
create energy efficiency benchmarks that better reflect practical
deployment conditions, providing valuable insights for developers
aiming to build more sustainable AI systems.

Index Terms—vLLM, Carbon Emissions, Inference, Large
Language Model, LLM, Pythia, HuggingFace, Energy Efficiency

I. INTRODUCTION

Large Language Models (LLMs) have seen a significant rise
in popularity in recent years. They are increasingly integrated
into everyday applications, such as Google’s Al-generated
summaries for search results, OpenAI’'s GPT-40, and the
growing adoption of Al agents across various platforms. The
industry’s pursuit of more accurate and capable models has
led to a dramatic increase in the size of LLMs. This trend
is evident in the evolution of OpenAl’s GPT series. GPT-1
contained 117 million parameters, while GPT-3, released just
three years later, scaled up to 175 billion parameters. GPT-4
is estimated to exceed one trillion parameters, highlighting the
exponential growth in model complexity.

As models grow in size, their energy consumption increases
accordingly. The widespread adoption of LLMs has led to a
significant rise in energy usage and associated CO2 emissions,
raising concerns about their environmental impact.

Energy consumption and carbon emission both from the
training of LLMs, as well as from the inference have gained
attention in academia [1], [2]. However, most recent research
in inference has been limited in collecting energy consumption

Corresponding author: q.zhao@fontys.nl.

2" Qin Zhao
Sustainable Data & Al Group
Fontys University of Applied Sciences
Eindhoven, The Netherlands
g.zhao @fontys.nl

in the lab conditions [1], [3]. By simulating models in settings
that do not adapt up-to-date tooling, that do not reflect how
modern LLM services serve text generation and other appli-
cation.

We introduce the LLM Efficiency Benchmark, designed to
evaluate LLMs under realistic conditions that reflect modern
serving environments. This benchmark leverages vLLM [4], a
high-performance LLM backend optimized for handling large
volumes of requests. vVLLM improves model throughput by
optimizing memory management and GPU utilization, making
it well-suited for simulating production-level workloads.

The remainder of this paper is organized as follows: Section
IT reviews related work. Section III outlines the design of the
benchmark along with the hardware and software configura-
tions used in our experiments. In Section IV, we present our
results, analyzing how LLM energy efficiency varies across
different scenarios. Section V discusses how our findings
relate to prior research and offers recommendations for future
efforts in developing realistic benchmarks. Finally, Section VI
concludes the paper.

II. RELATED WORK

Al models have taken a exponential leap in complexity
ever since Alex-Net came out in 2012 [5]. The increased
complexity of Al models are often a product of trying to
achieve more accuracy. Less attention has been directed at
the carbon offset of these models. This section will discuss
how carbon offset estimations can be made based on en-
ergy consumption, how computer energy consumption can
be measured, what earlier researches have measured Large
Language Model power consumption, and how vLLM serves
as an efficient LLM serving backend.

A. Carbon Offset

An Al model’s carbon offset can be estimated by measur-
ing its power consumption and multiplying it with its local
power grid’s carbon intensity. This can be location and time
dependent, as power grids can have different power sources
such as solar, hydro, wind, coal or gas power stations. Another
factor necessary to estimate the carbon offset of AI models is
its Power Usage Effectiveness (PUE). This coefficient accounts
for the extra infrastructure power draw from the data center or



other location the model is being run on [6]. Carbon offset can
best be represented with COseq. This measures the effect of
green house gasses by the equivalent amount of COy emissions
needed to achieve the same effect. For instance, methane gas
has 25 times more global warming potential then CO,, thereby
making it 25 COqeq [7].

Model carbon offset can be reduced without having to
reduce the power consumption of said model. One way to
achieve this is by changing the location of the data center.
One study finds that running a model in Quebec would result
in 30 times less carbon emissions than running the same
model in Estonia [3]. Another way lower carbon emissions
can be achieved without lowering power consumption is by
optimizing the hours during the day the model is active. Due
to weather dependent energy sources like solar panels and
windmills, power grids can have varying carbon intensities
throughout the day. The Pause and Resume algorithm can
reduce energy consumption in ideal conditions by nearly 30%
[2].

These strategies are useful in the model training phase, but
less so during the inference phase. Data privacy regulations,
cost and latency issues become problems when choosing
server locations for serving model inference. Furthermore,
modern LLM serving solutions require the service to always
be available, unlike training that can be done in batches.

B. Energy consumption measurement

Estimating carbon offset requires accurate energy measure-
ments. When there is physical access to the machine this can
be done quite easily using a power meter or power monitor.
However, tracking the energy consumption of a single process
is more difficult [1]. Most embedded hardware comes with
sensors made to track energy consumption per component, or
even part of a component. These low level sensors can be
accessed by tools such as NVIDIA-smi [8] and powermetrics
[9].

Multiple tools have been created to measure the total
system energy consumption of software. All these tools use
a combination of different low level interfaces like RAPL
to get an accurate estimation of power consumption [10],
[11]. Most of this tooling combines power measurement with
carbon estimation. This is done by tracking power grid carbon
intensity worldwide. While this can give some meaningful in-
formation about the consequences of different server locations,
these estimations can vary in terms of accuracy based on the
provided local transparency.

C. LLM Efficiency measurements

As mentioned above, most existing research focuses on
measuring and mitigating carbon offset of LLM training. The
Machine Learning Emissions Calculator lets researchers mea-
sure the total carbon emissions of model training. This method
relies on researchers to self report training emissions [12],
which most models on Huggingface do not do. One study finds
that less than 3% of LLM’s on Huggingface report emission
readings [13]. In many studies inference energy efficiency is

estimated based on parameter size. However existing research
shows no correlation between parameter amount and energy
efficiency [3]. This is not the case when models are from
the same architecture, they conclude that there is a sub-linear
correlation between the two. This suggests that estimating
model efficiency is possible, as long as the model architecture
is the same [1], [3]. These studies base their metrics on
experiments in lab conditions, where some pre-processing
steps such as encoding are done beforehand instead of during
the energy measurement. The studies also display efficiency
in the energy-per-token metric. This metric is arguable as
the size of a token can vary per tokenizer, and most model
architectures use their own tokenizer. For instance the Gemma
tokenizer [14] encodes text on a per word basis, while the
GPT-3 tokenizer [15] can process a word into multiple tokens.
The existing studies implement the experiments using scripts
made with PyTorch and Huggingface’s Transformers library
[1], [3]. This can provide tests with fine-grain control of the
variables, but misses out on modern serving technology that
greatly optimizes model hardware performance.

D. LLM serving

In order to provide results that simulate real life situations,
LLM serving techniques need to be taken into account. Scaling
real-time LLM inference serving can be a resource intensive
task. Modern back-ends can optimize model serving to be
production ready. This can be done through a number of
features, such as hardware acceleration, automatic batching,
and memory optimization. One of these back-ends is VLLM
[4]. VLLM serves models with high throughput and low
latency through efficient use of hardware resources. It achieves
this with its paged-attention algorithm which allows values
to be stored in non continuous sequences, thereby making
memory management more flexible.

III. METHODOLOGY

The methodology covers the design of the LLM Efficiency
Benchmark and the design of the experiments. The section is
divided into the following subsections: the benchmark’s energy
consumption measurement strategy, the benchmark’s design,
and the experiments test parameters. Each part is described in
the following.

A. Measurement strategy

Measuring power consumption of hardware components
was done through CodeCarbon [10]. CodeCarbon estimates
power consumption per computer component by reading low-
level sensors through programs like NVIDIA-smi and Intel
Powergadget every 15 seconds. By multiplying the voltage
measurements with the time interval, CodeCarbon can estimate
power consumption on a per-component basis.

B. Benchmark design

This subsection describes the design of the software used
to execute a set of tests in order to run the benchmark. vLLM
has been chosen for running inference because of its high
performance and open source nature [4].



As described in Figure 1, the test is made up of multiple
runs. Each run has a different set of parameters, these are:
model, request amount and request rate. Before each run, 200
warm up requests are sent to the backend. This will prevent
variation in the measurements due to the hardware not reaching
heat saturation. All tests were done with no request rate. This
means that all requests are sent to the backend at the same
time. The specific requests to be sent are selected from a
dataset. The dataset can be selected per run. Every run will
go through the dataset in the same order. Before the requests
were sent, the CodeCarbon tracker was activated. The tracker
stayed active until all requests were returned by the backend.

Load model and
Initialise configuration dataset from Warmup run Perform runs /Aggregate test results
Huggingface

Steps taken for each
test in the benchmark. |

Stop tracker when

Start tracker requests return

Set load volume > »  Send requests >

Fig. 1. The benchmark process. Each benchmark can have multiple runs,
these can differ in parameters. Once the run is configured, the energy tracking
will start and the system will preform experiment. When the back-end has
processed all requests the test will end.

C. Test parameters

This subsection describes the parameters and scenarios used
for the evaluation of LLM power consumption during infer-
ence. All tests are done on a PC with 2 NVIDIA GeForce RTX
3090’s a 13th Gen Intel(R) Core(TM) i9-13900K processor
and 128 Gigabytes of DDR5 RAM.

All tests are preformed with phrases from the HellaSwag
dataset [16]. HellaSwag is a dataset designed to test natural
language accuracy. It presents the model with uncompleted
phrases, and asks the model to complete these sentences. The
model’s results will not be collected, as accuracy is not in the
focus of this experiment.

There will be an analysis of how LLMs preform under these
different parameters:

1) Request load: As vLLM is designed to handle requests
at high volume, it is imperative to measure wether the effi-
ciency changes when there are different request amounts. By
preforming all further experiments in request loads of 5 to
5000 at a time, it is possible to analyze how model efficiency
changes throughout these different loads.

2) Model size:: The size of a model is most accurately
measured by the number of trainable or free parameters. This
directly affects the amount of operations that have to be
performed during inference as well as the amount of memory
needed to load the model.

To analyze the differences in energy consumption across
model sizes, we chose the Pythia family of models [17]. The
list of selected models can be found in Table I. Pythia has
been chosen not to optimize each model’s size to its greatest
potential, instead, the family of models has been designed
to isolate the model’s parameter amount as a variable. This
provides a solid basis to perform size based analysis.

TABLE I
LIST OF THE SELECTED PYTHIA MODELS. LAYERS ARE SEQUENTIAL
STEPS IN WHICH PARAMETERS ARE CALCULATED. ONE LAYER CANNOT
BE STARTED UNTIL THE PREVIOUS HAS BEEN COMPLETED.

Params | layers
70M 6
160M 12
410M 24

1B 16
1.4B 24
2.8B 32
6.9B 32

3) Model Architecture:: The architecture of a model refers
to the implementation strategy of components like embedding
dimensions, number of layers or the number of attention heads.
Most ’base” models often have their own architecture. With
different quantizations or parameter sized versions of that
architecture being considered to be in the same “family”. To
find suitable models to compare architectures, they need to be
the same parameter size. The list of selected models can be
found in Table II. The models have been selected to allow for
cross-comparison with an other study [1].

TABLE II
LIST OF THE SELECTED MODELS FOR TESTING ARCHITECTURE.

Name Params
Pythia [17] 2.8B
Dolly V2 [18] 2.8B
BLOOM [19] 3B

Redpajama [20] | 2.8B

IV. RESULTS

The results address three factors influencing energy con-
sumption: the number of requests, the size of the model and
the model’s architecture.

A. Request amount

The amount of requests being sent to the serving backend at
the same time has effect on the energy consumption per request
as shown in Figure 2. This Figure presents seven graphs,
each graph shows the results of one of the selected models
from Table 1. The X-axis represents the request amount. This
is the amount of requests that was send to VLLM at the
same time. The Y-axis represents the GPU consumption per
request as measured in joules. As the request amount increases,
the consumption per request decreases. This behavior stops
at 100 simultaneous requests. Beyond this measurement, the
per request energy costs reach a plateau. Larger models have
less variance in energy consumption per request amount. For
instance, the 6.9 billion parameter version of Pythia shows a
stabilized energy consumption per request at 40 parameters.
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Fig. 2. Inference energy cost per request on the Pythia suite. model size
varies from 70 million to 6.9 billion parameters.

The same behavior is true for models of different archi-
tectures as shown in Figure 3. This figure presents four
experimental results of the models listed in Table II, the X-
and Y-axis are the same as in Figure 2. As before, it shows
that energy consumption per request decreases until it reaches
a plateau at 100 simultaneous requests.
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Fig. 3. Inference energy cost per request on different model architectures.
Each model is close to 3B parameters in size.

B. Model size

The energy per request is observed to increase as model
parameter size increases as shown in Figure 4. This graph
presents the energy consumption of a model in joules and
is calculated by dividing the total energy consumption of
the GPU during the experiment by the amount of requests
processed. 100 requests are used, as they have been shown to
read plateau in Figure 2 and Figure 3.
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Fig. 4. Inference energy costs per 100 requests on the Pythia suite. There
is a close to linear relationship between parameter size and GPU energy
consumption per request.

The close to linear relationship is shown to be true for
most models except the 410 million parameter model which
consumes roughly the same amount of energy per request as
the 1B parameter model.

C. Model Architecture

There are no significant differences between models of
comparable size but different architecture. As depicted in
Figure 5, four models with size close to 3B parameters are
chosen. Their GPU consumption per request are compared,
and are with marginal differences.

V. DISCUSSION

In our benchmarks with vLLM we find that model efficiency
decreases close to linearly with model parameter size when
models are of the same architecture. These results are in
line with an earlier study from the Polytechnic University
of Madrid. They found the same differences between models
when comparing model parameter size to energy per token
[1]. However, both our study as their study found a deviation
in the 1 billion and 410 million model. These models appear
to have roughly the same energy efficiency, even though the
parameter count has more than doubled. as stated in Argerich
et al. [1], this can be explained by the difference in layers. The
1 billion parameter model has 16 layers while the 410 million
model has 24 layers [17]. This can explain the similar power
efficiency as each layer needs to be completed before another
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Fig. 5. Inference energy costs per 100 requests on different 3B parameter
models. Each model has been tested 10 times, the black line shows the
standard deviation of the tests.

layer can start processing, thus limiting the amount that the
model can be efficiently parallelized.

We also find that model architecture with similar size has
no significant effect on model efficiency. This is where our
results differ from Argerich et al [1]. They find an significant
efficiency increase of 47% between the least and most efficient
models in the category. When comparing these results, it needs
to be considered that our experiments differ in multiple ways.
We measure energy efficiency in joules per sent request and
we use VLLM, where they measure energy efficiency in joules
per token and use the Huggingface transformers library [1],
[3], [21]. vVLLM offers multiple optimizations that make model
serving more efficient. It could be the case that vLLM’s design
renders the efficiency gain between architecture negligible.
While this could give a possible explanation for the different
behavior, there has yet to be a clear explanation for why vLLM
would offer this stabilization between architectures. Further
research is needed to explore this aspect.

A. Validity

As discussed in the previous section, this research has
deviated from earlier work in two main ways. The first de-
viation is that experiments are done through the use of vLLM
for inference testing. vLLM is more challenging to test and
validate. This is because the backend optimizes the model’s
inference performance in real time, by automatic batching,
speculative decoding and GPU acceleration [4]. It creates more
variables that can influence the outcome of the test. This has
impact on the internal validity of the results, as the question
can be posed if the tests measure the efficiency of models,
or the efficiency of vLLM. It is however of great importance
to use modern inference backend when testing performance as
this work has tried to best replicate realistic scenario’s that can
be found in modern LLM serving technologies. We argue that
it not possible to accurately assess a model’s efficiency without
also considering the serving method. Since VLLM is among

the most efficient serving solutions currently available, it has
been chosen for this study. The other deviation of this work
compared to previous is the use of the energy consumption
per request as the metric, this is different from the energy
consumption per token done by most other LLM energy effi-
ciency papers. The preference for token based measurements
is that responses and questions may be of different token sizes,
thereby making tokens a consistent and accurate indicator for
amount of work done. However, there are multiple arguments
to be made for the energy per request metric:

1) Different model architectures have different tokenizers,
GPT based model might create multiple tokens per
word, while other tokenizers can only encode text per
individual word.

2) Part of the LLM’s structure is its tendency to create
longer or shorter replies to text inputs. While this can be
influenced by the models implementation, one model can
create more concise answers. This can lead to efficiency
gains as well.

B. Limitations

This study has not accounted for all possible parameters,
with accuracy being the most prominent omission. There are
several different ways that accuracy and other metrics like
perplexity can be measured. There are popular global leader-
boards for LLM accuracy [22]. However, these leader-boards
often mainly test natural language quality or performance
in specific domains. Depending on a developers use case,
different accuracy metrics may hold varying degrees of rele-
vance. For instance, a model made specially to analyze classic
novels might struggle with a math accuracy test, but the math
accuracy test would not be relevant in this situation. Since our
focus is on energy efficiency of LLMs, we have ignored this
for now.

C. Future work

This work has shown that models of comparable parameter
counts are on par in terms of efficiency. Our observations
differ from the earlier study when testing the impact of model
architecture on energy efficiency. To reconcile these studies,
further research is needed. To fill in the remaining gaps in
knowledge and validity, and create more knowledge about
energy efficiency of large language models, we recommend
the following steps for future research:

e Test more LLM’s: To further validate results of the
model parameter size and architecture, it is advised to
create larger tests with more models, these can then be
analyzed on parameter count and architecture/

o Test more LLM serving techniques: LLM serving tool-
ing and techniques are evolving rapidly. It is important
to test with a larger variety of vLLM competitors. Future
research should look into TGI [23] and TensorRT [24]
among others.

o Create benchmarks on both energy efficiency and
accuracy: While this study finds a direct correlation
between parameter size and energy efficiency, this does



not necessarily mean that there is a correlation between
energy efficiency and accuracy. As some optimized mod-
els with lower parameter counts can outperform larger
models in specific accuracy benchmarks [22]. Further
research into energy efficiency against accuracy scores
will be of great value to developers in their choice for
LLM.

VI. CONCLUSION

As LLM’s become increasingly ubiquitous in in our daily
lives, reducing the impact they have on the climate becomes
more and more relevant every day. Before developers can
contribute effectively to this cause, they need a clear un-
derstanding, and be properly informed of how their choice
of model influences energy consumption and overall system
efficiency. Through the creation of the LLM Efficiency Bench-
mark, we have shown that it is possible to create a benchmark
that can simulate realistic LLM serving scenario’s. In the
future, We will work on creating a extensive LLM energy
efficiency database to support developers to create and select
more energy conscious LLM’s for production use.
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